SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

WATER	SUPPLIES	&	TREATMENT
-------	----------	---	-----------

Course Title;

WTR 201-5

Code No.:

WATER RESOURCES/PULP & PAPER ENGINEERING TECHNOLOGY

Program:

IV VI

Semester:

MAY 1988

Date:

JOHN K. THEIL

Author:

New: Revision:

APPROVED:

Chairperson

J M

WTR 201-5 WATER SUPPLIES & TREATMENT

V7ATER SUPPLIES & TREATMENT

WTR 201-5

Course Name

Course Number

GOALS;

To present basic knowledge and practices, theories and applications relevant to sources of water supplies, treatment processes, quality parameters and plant operations.

OBJECTIVES;

- 1. Understand the need for the production of highest quality of water.
- 2. Understand the various types of bacterial and physiochemical characteristics of water as parameters of water quality.
- 3. Know drinking water standards.
- 4. Know the sources of water for water supply and their quality in general.
- 5. Know about the various unit operations (physical, chemical and biological) commonly used in the treatment of water.
- 6. Know the role of a plant operator in maintaining the quality of water under different situations of plant loadings and raw water quality.
- 7. Become familiar with various treatment processes and systems. Know design criteria/procedures for flocculation and sedimentation tanks, filters and chemical feeding equipment.
- 8. Develop skills for making fast and accurate computations needed for design as well as operational parameters used in process control.
- 9. Carry out laboratory analysis for the turbidity, colour, pH, alkalinity, coagulent effectiveness, chlorine and flouride residual, hardness, iron, manganese and total dissolved solids.

WTR 201-5

- 10. In the operation of a water treatment plant, know the following:
 - a. To prepare chemical solutions for dosage rate selected based on jar test and other quality parameters.
 - b. To calculate feed rate for a selected flow rate and adjust feed pump to yield the required output.
 - c. To observe colour turbidity, pH, chlorine residual and hardness of raw and finished water.
 - d. To adjust different controls, including backwashing operation.

METHOD OF ASSESSMENT (GRADING METHOD):

Laboratory Work/Assig	gnments	30%
Interim Examinations	(2 @ 20%)	40%
Final Examination		30%

GRADING:

A passing grade will be based on a composit grading of 60%. Students obtaining a composite grading of 55 to 59% may be allowed to complete a supplementary examination.

A+ 90-100% A 80-89% B 70-79% C 60-69%

TEXTBOOKS;

Hammer, Mark J. <u>Water and Wastewater Technology</u> (SI Version), 2nd Edition, John Wiley and Sons, Toronto, 1977.

Ministry of the Environment, <u>Laboratory Skills for Plant Operators</u>, Vol. 2, 135 St. Clair Avenue West, Toronto, Ontario.

REFERENCES:

Fair, Gordon Maskey, Geyer, John C, <u>Elements of Water Supply and Wastewater Disposal</u>, 2nd edition, John Wiley and Sons, Toronto, 1971.

Viessman, W. Jr., Hammer, M. J., <u>Water Supply and Pollution Control</u>, 4th edition. Harper and Row Publisher[^]) New York, 1985.

Tchobanoglous, G., E.D. Schroeder, <u>Water Quality</u>, Addison-Wesley Publishing Company, Don Mills, Ontario, 1985.

Peavy, H.S., D.R. Donald, G. Tchobanogluns, Environmental Engineering, McGraw Hill Book Company, Toronto, 1985.

TAPPI, Water Supply and Treatment, State-of-the-Art, Technical Association of the Pulp and Paper Industry, One Dunwoody Park, Atlanta, GA, 30338, 1978-

WTR 201-5

COURSE OUTLINE!

Water quality and pollution, water processing, sedimentation, filtration, chemical treatments, softening and desalination, chlorination, flouridation, operation of water works.

TOP:	IC	' ' NO.	OF WEEKS
1.	Water	quality and standards	2
2.	1.1 1.2 1.3 1.4 Water	Physical and Chemical characteristics	11
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Surface water and ground water treatment systems Disposal of waste from water treatment processes Mixing and flocculation Chemical feeders Sedimentation, clarifiers	
	-	Iron and manganese removal Hardness removal Chlorination Flouridation Turbidity and odour control	
3.	Operat 3.1 3.2 3.3 3.4 3.5	1 2	2

LABORATORY EXERCISES

- 1. Colour and turbidity
- 2. Alkalinity and ph
- 3. Jar test
- 4. Hardness and aggressive index
- 5. Chlorine/fluoride residual
- 6. Design parameters of treatment devices
- 7. Plant operation and process control

NOTE: Depending upon time and equipment limitation, some exercises may $b^{\ \ }$ replaced or will be covered in other courses.